Shifts in Precipitation Accumulation Extremes During the Warm Season Over the United States (published August 2018)

Precipitation accumulations, integrated over precipitation events in hourly data, are examined from 1979 to 2013 over the contiguous United States during the warm season (May–October). As expected from theory, accumulation distributions have a characteristic shape, with an approximate power law decrease with event size followed by an exponential drop at a characteristic cutoff scale sL for each location. This cutoff is a predictor of the highest accumulation percentiles and of a similarly defined daily precipitation cutoff PL. Comparing 1997–2013 and 1979–1995 periods, there are significant regional increases in sL in several regions. This yields distribution changes that are weighted disproportionately toward extreme accumulations. In the Northeast, for example, risk ratio (conditioned on occurrence) for accumulations larger than 109 mm increases by a factor of 2–4 (5th–95th). These changes in risk ratio as a function of size, and connection to underlying theory, have counterparts in the observed daily precipitation trends.

Martinez‐Villalobos, C., & Neelin, J. D. (2018). Shifts in precipitation accumulation extremes during the warm season over the United States. Geophysical Research Letters, 45, 8586–8595. https://doi.org/10.1029/2018GL078465

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078465

fig5_2018_mn

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s